Automatic Diagnosis of Ovarian Carcinomas via Sparse Multiresolution Tissue Representation
نویسندگان
چکیده
It has now been convincingly demonstrated that ovarian carcinoma subtypes are not a single disease but comprise a heterogeneous group of neoplasms. Whole slide images of tissue sections are used clinically for diagnosing biologically distinct subtypes, as opposed to different grades of the same disease. This new grading scheme for ovarian carcinomas results in a low to moderate interobserver agreement among pathologists. In practice, the majority of cases are diagnosed at advanced stages and the overall prognosis is typically poor. In this work, we propose an automatic system for the diagnosis of ovarian carcinoma subtypes from large-scale histopathology images. Our novel approach uses an unsupervised feature learning framework composed of a sparse tissue representation and a discriminative feature encoding scheme. We validate our model on a challenging clinical dataset of 80 patients and demonstrate its ability to diagnose whole slide images with an average accuracy of 91% using a linear support vector machine classifier.
منابع مشابه
Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملNapsin-A Expression, a Reliable Immunohistochemical Marker for Diagnosis of Ovarian and Endometrial Clear Cell Carcinomas
Background & Objective: Clear cell carcinomas (CCC) differ from other types of ovarian and endometrial carcinomas in biolo...
متن کاملContourlets: a directional multiresolution image representation
We propose a new scheme, named contourlet, that provides a flexible multiresolution, local and directional image expansion. The contourlet transform is realized efficiently via a double iterated filter bank structure. Furthermore, it can be designed to satisfy the anisotropy scaling relation for curves, and thus offers a fast and structured curvelet-like decomposition. As a result, the contourl...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015